Hemanote

Consultants

88 HELEN STREET, SEFTON

PROPOSED SELF-STORAGE FACILITY

TRAFFIC & PARKING IMPACT ASSESSMENT

MARCH 2025

HEMANOTE CONSULTANTS PTY LTD TRAFFIC ENGINEERING & DESIGN CONSULTANTS PO BOX 743, MOOREBANK NSW 1875 CONTACT: 0414 251 845 EMAIL: projects@hemanote.com.au

TRAFFIC & PARKING IMPACT ASSESSMENT 88 HELEN STREET, SEFTON PROPOSED SELF-STORAGE FACILITY DATE: 31 MARCH 2025

DISCLAIMER

All information and material contained in this report is the property of Hemanote Consultants. It is solely based on the instructions of our client and the findings of Hemanote Consultants and is not intended for use or should not be relied upon by any third party. No responsibility is undertaken by Hemanote Consultants to any third party.

Any use, copying, reproduction or retransmission of the information and material in this report, in whole or in part, is not permitted without the written consent of Hemanote Consultants.

Document Management

Traffic & Parking Assessment - 88 Helen Street, Sefton

Doc. Revision	Prepared by	Reviewed by	Issued by	Issue date
Draft 1 (internally)	S. Payet	R. Selim	S. Payet	20 Jan 2025
Draft report (to client)	S. Payet	R. Selim	S. Payet	24 Feb 2025
Draft report (to client)	S. Payet	R. Selim	R. Selim	25 Feb 2025
Final report (to client)	S. Payet	R. Selim	R. Selim	31 March 2025

Table of Contents

1	INTF	RODUCTION	.4
2	EXIS	STING SITE DESCRIPTION	.5
3	EXIS	STING TRAFFIC CONDITIONS	.7
	3.1	Road Network and Classification	.7
	3.2	Road Description and Traffic Control	.7
	3.3	Current Traffic Volumes	.9
	3.4	Existing Transportation Services1	13
4	PRC	POSED DEVELOPMENT1	14
	4.1	Description of the Proposal1	14
	4.2	Vehicular & Pedestrian Access1	15
	4.3	On-site Parking Provision1	16
	4.4	On-site Parking Layout and Circulation1	16
5	ON-	STREET PARKING PROVISION1	18
	5.1	Existing Parking Controls1	18
	5.2	Impacts of Proposed Development on Parking1	18
6	EXT	ERNAL TRAFFIC IMPACT1	19
	6.1	Estimated Future Traffic Generation1	19
	6.2	Projected Intersection Performance (Post Development)1	19
7	CON	ICLUSION	26
	Append	dix 'A' – Proposed Development Plans2	27
	Append	dix 'B' – Vehicle Swept Paths	29
	Append	dix 'C' – Traffic Volume Surveys	47
	Append	dix 'D' – SIDRA Intersection Analysis	50

1 INTRODUCTION

This report has been prepared by Hemanote Consultants on behalf of La Salle Group Holdings Pty Ltd, to assess the traffic and parking implications for the proposed selfstorage facility development to be located at **88 Helen Street, Sefton**.

This report is to be read in conjunction with the architectural plans prepared by Gelder Group Architects (a reduced copy of the architectural plans, Issue 'O' dated 19/03/2025 is attached in *Appendix* 'A' of this report) and submitted to Canterbury-Bankstown Council as part of a Development Application.

This report is set as follows:

- Section 2: Description of the existing site location and its use;
- Section 3: Description of existing traffic conditions near the subject site;
- Section 4: Description of the proposal, vehicular access, on-site parking provision, layout and circulation;
- Section 5: Assessment of impacts on parking;
- Section 6: Assessment of impacts on traffic in the vicinity of the subject site; and
- Section 7: Outlines conclusions.

2 EXISTING SITE DESCRIPTION

> Site Location

The subject site is located on the eastern side of Helen Street at property No. 88 (legally known as Lot X of DP420237), within the suburb of Sefton. The site has a frontage of approximately 100 metres to Sefton Street from the west.

Refer to Figure 1 for a site locality map.

Figure 1: Site Locality Map

> Existing Site & Surrounding Land Use

The subject site has an area of 5,201.8m² and currently used for industrial purposes. It is located in a mixed residential and commercial area, characterised by residential developments as well as commercial type sites.

The site is also located approximately 650 metres from Sefton Railway Station, 1.6 km from Regents Park Railway Station and 1.6 km from Chester Hill Railway Station.

Photo 1: Site frontage to Helen Street

Consultants

3 EXISTING TRAFFIC CONDITIONS

3.1 Road Network and Classification

Helen Street is a local road that runs in a north to south direction, between its extension as Munro Street (local road) to the north and its dead-end near Sefton Railway Station to the south. Helen Street intersects with a number of local roads near the subject site, including Roosevelt Avenue, Lorando Avenue and Chifley Avenue.

3.2 Road Description and Traffic Control

Helen Street has a two-way undivided carriageway, with a width between kerbs of approximately 11 metres. At present, unrestricted parking is permitted along both sides of Helen Street (near the subject site), including the frontage of the subject site, with the exception of the signposted 'No Stopping' near close intersecting roads, and signposted 'No Parking Vehicles Under 6M Excepted' posted along some sections of the road.

The legal speed limit on Helen Street is 50km/h. Helen Street intersects with Roosevelt Avenue, Lorando Avenue and Chifley Avenue, which are all controlled by 'T-priority' traffic measures, given to traffic travelling along Helen Street.

Figure 2: Aerial photograph of the subject site and surrounding road network

Consultants

Photo 2: Helen Street at the subject site - facing north

Photo 3: Helen Street at the subject site - facing south

3.3 Current Traffic Volumes

A traffic volume surveys was undertaken by Hemanote Consultants at the intersections of:

- Helen Street / Virgil Avenue
- Hector Street / Munro Street

in the vicinity of the subject site on Wednesday 20 November 2024, during morning period (7.00am to 10.00am) and afternoon period (3.00pm to 6.00pm), considering the proposed hours of operation of the subject development and traffic peak periods.

The traffic flows in the morning & afternoon peak hours are shown in Tables 1 and 2 below and in *Appendix 'C'* of this report.

Traffic movement	Morning Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)
	8.00am – 9.00am	3.00pm – 4.00pm
	Helen Street (North of Vir	gil Avenue)
Northbound	203	251
Southbound	269	315
	Helen Street (South of Vir	rgil Avenue)
Northbound	326	410
Southbound	449	507
	Virgil Avenue	
Eastbound	203	215
Westbound	146	182

Table 1: Current traffic flows in the vicinity of the subject site (on a typical weekday)

Hemanote Consultants

Traffic movement	Morning Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)		
	8.00am – 9.00am	3.00pm – 4.00pm		
Hector Street (North of Munro Street)				
Northbound	516	616		
Southbound	540	628		
	Hector Street (South of M	unro Street)		
Northbound	429	485		
Southbound	427	505		
Munro Street				
Eastbound	151	160		
Westbound	125	168		

Table 2: Current traffic flows in the vicinity of the subject site (on a typical weekday)

The results of the traffic volume surveys undertaken determined that the traffic morning peak period at the surveyed intersections, was between 8.00am to 9.00am and the afternoon peak period was between 3.00pm to 4.00pm on a typical weekday.

The existing traffic flows on Helen Street, Virgil Avenue, Munro Street and Hector Street are appropriate for three local roads and one regional road, respectively, in a mixed residential and commercial area, where traffic is well controlled without major queuing or delays at the subject site in peak hours, with spare capacity.

It is determined that the existing mid-block level of service on Munro Street and Virgil Avenue is at level 'A' in accordance with Table 4.4 of the Roads & Maritime Services' *"Guide to Traffic Generating Developments - 2002"* (shown on the following page). The existing mid-block level of service on Helen Street ranges between levels 'A' to 'B'.

Consultants

Hemanote

Level of Service	One Lane (veh/hr)	Two Lanes (veh/hr)
А	200	900
В	380	1400
С	600	1800
D	900	2200
E	1400	2800

Table 4.4: Urban road peak hour flows per direction RMS Guide)

> Current Intersection Performance (pre-development)

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provide a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "*Guide to Traffic Generating Developments - 2002*" (shown below).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

Table 4.2: Level of Service Criteria for intersections (RMS Guide)

A **pre-development** SIDRA intersection performance analysis was undertaken for the following existing intersections in the vicinity of the subject site:

- Helen Street / Virgil Avenue
- Hector Street / Munro Street

Refer to Figure 3 on the following page, showing the intersections network layout controlled by a roundabout at Helen Street / Virgil Avenue and a T-priority traffic measure with associated 'STOP' signage at Hector Street / Munro Street. Helen Street, Virgil Avenue, Munro Street and Hector Street have undivided carriageways, all with one through traffic lane in each direction.

Figure 3: Existing Intersection Network Layout

The pre-development SIDRA performance analysis determined that the current operational performance of the existing intersection of Helen Street / Virgil Avenue is in good operation at a Level of Service (LOS) 'A' during AM and PM peak periods.

The pre-development SIDRA performance analysis determined that the current operational performance of the existing intersection of Hector Street / Munro Street is generally in good operation at a Level of Service (LOS) 'A' during AM and PM peak periods, with the exception of the right-turn movement into Hector Street on the east approach leg of Munro Street, which is at LOS 'B' during AM peak and LOS 'C' during PM peak. The left-turn movement into Hector Street on the east approach leg of Munro Street is at LOS 'B' during PM peak.

Refer to the summary of the results of the SIDRA intersection performance analysis attached in *Appendix 'D'* of this report.

3.4 Existing Transportation Services

The subject site has good access to public transport services in the form of trains and buses. The site is located approximately 650 metres from Sefton Railway Station, 1.6 km from Regents Park Railway Station and 1.6 km from Chester Hill Railway Station.

Frequent bus services operate along Carlingford Street, Hector Street, Elliston Street, Waldron Road, Priam Street, Bent Street, Campbell Hill Road, Wolumba Street, Chester Hill Road, Proctor Parade and Rose Street, in close proximity to the subject site (i.e. bus routes M91, N50, S2, 908, 911 and 916).

Figure 4: Bus services near the subject site (Bus Route No. 911)

4 PROPOSED DEVELOPMENT

4.1 Description of the Proposal

The proposed development seeks approval for the construction of a multi-unit selfstorage facility to be located at **88 Helen Street**, **Sefton**.

The proposal will include the following:

- Self-storage units with a total MLA of 2,921.58m².
- Five (5) on-site car parking spaces (including one accessible parking space with an adjacent shared area), in addition to one (1) SRV truck loading bay and a turning area, on ground level.

Refer to *Appendix 'A'* for the proposed development plans.

Typically, the majority of customers using the self-storage facility are private users, who will be accessing the site by standard passenger cars, station wagons or vans/utes, which is equivalent to a B99 vehicle, with the largest size vehicle to access the site being a Small Rigid Vehicle (SRV – 6.4 metres long small truck).

It is important to note that self-storage facilities typically reflect a very low level of land use in terms of car parking and traffic generation. Customers of such facilities are mostly domestic private users and visits to the storage facility are infrequent and generally brief, thus regular visits by the same users are not expected daily.

4.2 Vehicular & Pedestrian Access

The vehicular access to and from the off-street parking facilities will be via a new access driveway crossing to be located in Helen Street. The access driveway is to have a width of 6.1 metres, which is adequate for a low volume (Category 2) access driveway in accordance with AS2890.1:2004 – Table 3.2 and SRV access in accordance with AS2890.2:2018.

The access driveway is to provide two-way vehicular movements, where two vehicles can pass each other at the same time without causing delays or congestion to traffic on the street. The proposed access driveway is located more than 6 metres from the tangent point of the adjacent kerbline, in accordance with Figure 3.1 of AS2890.1:2004.

Vehicular access is to be located and constructed in accordance with the requirements of AS2890.1:2004, where vehicles enter and exit the site in a forward direction at all times.

The existing vehicular crossing located in Helen Street is to be removed and replaced with new kerb, gutter and footpath, to be constructed to Council specifications.

The clear sight line triangle (2.5m x 2m) between the driver's eye view and pedestrians is to be provided on the exit side of the driveway, as per Figure 3.3 of AS2890.1:2004 and Figure 3.4 of AS2890.2:2018.

A separate pedestrian access gate is also provided at the front of the site in Helen Street, to segregate pedestrians and vehicles and improve safety within the site.

4.3 On-site Parking Provision

The Self Storage Association of Australia (SSAA) commissioned a Parking and Traffic Study which was prepared by Stantec in 2022/2023, to assist local government and traffic engineers in determining the appropriate parking demand for new self-storage facilities.

The updated 2022/2023 Parking and Traffic Study indicates that five (5) car parking spaces are required for facilities under 3,000m² MLA. Given that the proposed development has an MLA of 2,921.58m², it necessitates the provision of five (5) on-site car parking spaces.

The proposed on-site car parking area provides five (5) on-site car parking spaces (including one accessible parking space with an adjacent shared area), in addition to one (1) SRV truck loading bay and a turning area, on ground level.

Therefore, the proposed on-site parking is adequate for the proposed development use and in accordance with the findings of the SSAA Parking and Traffic Study 2022/2023.

4.4 On-site Parking Layout and Circulation

The layout of the on-site car parking area and manoeuvring arrangements has been designed to enhance vehicular access, through the provision of adequate internal traffic aisle width and turning space.

AS2890.1:2004 Parking facilities Part 1: Off-street car parking requires a minimum parking space width of 2.5 meters and a minimum length of 5.4 meters (User Class 2). The proposed off-street car parking spaces have a minimum width of 2.5 metres and a length of 5.4 meters each, which is adequate.

The accessible car parking space has a width of 2.7 metres, in addition to an adjacent 2.4 metres wide shared area, which is adequate in accordance with AS2890.6:2009 (and the updated AS2890.6:2022).

The loading bay has a clear width of 3.5 metres and a length of 6.5 metres, in addition to unobstructed clearance for loading/unloading purposes, which is adequate for SRV access in accordance with AS2890.2:2018.

Car parking spaces adjacent to walls or obstructions have been made wider than the minimum width, to accommodate full door opening in accordance with Clause 2.4.2(d) of AS2890.1:2004.

Clause 2.4.2 of AS2890.1:2004 requires a minimum aisle width of 5.8 metres for oneway aisles. The proposed internal aisles have a minimum width of 6.1 metres, which is adequate for one-way traffic and for vehicles to manoeuvre into and out of the parking spaces.

A wide turning area is provided towards the rear of the car parking area, to allow vehicles to turn around and exit in a forward direction, if all other car parking spaces are occupied.

A minimum 2.2 metres (for passenger vehicles) and 3.5 metres (for SRV truck) headroom clearance is to be provided from the car park level to the underside of all services conduits and suspended stormwater pipelines, in accordance with Clause 5.3.1 of AS2890.1:2004 and Table 2.1 of AS2890.2:2018, respectively.

The largest size vehicle to access the subject site is a Small Rigid Vehicle (SRV 6.4 metres in length).

All vehicular manoeuvring within the site has been designed and checked using the SRV, B99 and B85 standard design vehicle turning paths from AS2890.1:2004, AS2890.2:2018 and Austroads. Refer to the vehicle swept paths diagrams attached in Appendix 'B' of this report.

Therefore, the on-site parking layout, vehicular manoeuvring and circulation arrangements are adequate for the proposed development and in compliance with AS2890.1:2004, AS2890.2:2018 and AS2890.6:2009 (and the updated AS2890.6:2022), where vehicles are to enter and exit the site in a forward direction at all times.

Consultants

5 ON-STREET PARKING PROVISION

5.1 Existing Parking Controls

The subject site is located in a mixed residential and commercial area, where unrestricted parking is permitted along both sides of Helen Street (near the subject site), including the frontage of the subject site, with the exception of the signposted 'No Stopping' near close intersecting roads, and signposted 'No Parking Vehicles Under 6M Excepted' posted along some sections of the road.

5.2 Impacts of Proposed Development on Parking

The parking demand resulting from the proposed self-storage facility can be accommodated within the proposed adequate and compliant on-site car parking. Therefore, the proposed development will not have adverse impacts on parking in the surrounding area.

6 EXTERNAL TRAFFIC IMPACT

6.1 Estimated Future Traffic Generation

The "*Guide to Transport Impact Assessment - 2024*" does not provide a traffic generation rate for self-storage facilities.

The Self Storage Association of Australia (SSAA) commissioned a Parking and Traffic Study which was prepared by Stantec in 2022/2023, to assist local government and traffic engineers in determining the appropriate traffic generation rates for new self-storage facilities.

The Parking and Traffic Study estimates the following trip generation for facilities under 3,000m² MLA:

- 6.6 trips per weekday peak hour and 5.5 trips per weekend peak hour.
- 63 daily trips per weekday and 47.2 daily trips per weekend.

The proposed development has an MLA of 2,921.58m² and therefore is estimated to have a **peak hour** traffic generation of **6.6 vehicle trips** on a weekday and 5.5 vehicle trips on the weekend.

6.2 **Projected Intersection Performance (Post Development)**

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provides a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "*Guide to Traffic Generating Developments - 2002*" (shown below).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

Table 4.2:	Level of Service Criteria for intersections (RMS Guide)

Hemanote

Consultants

A **post-development** SIDRA intersection performance modelling analysis was undertaken for the intersections of Helen Street / Virgil Avenue and Hector Street / Munro Street, in the vicinity of the subject site, and it was modelled as the proposed network layout as shown in Figure 5 below.

Refer to the summary of the results of the SIDRA intersection performance analysis (undertaken for pre & post development, including the 10-year future growth) attached in *Appendix 'D'* of this report.

Figure 5: Intersection Network Layout

Hemanote

The following <u>assumptions</u> have been considered and adopted in the SIDRA Network Intersection modelling for the post-development conditions considering that the main access to and from the subject site is through Helen Street:

- Morning and afternoon peak traffic generation from *RMS Guide to Traffic Generating Developments* has been used, as outlined in Section 6.1 of this report.
- AM & PM Traffic generated by the development was equally adopted for inbound and outbound traffic.
- The distribution of traffic generated from the development at the **modelled intersections** has been assigned based on existing traffic patterns at the approaching and departing legs of these intersections, as well as observed driver behaviour.
- Pre-development network analysis is modelled for the base year (2024) and 10 years of future growth (2034) in surrounding traffic. The annual traffic growth rate for the 10-year future period was based on the SIDRA intersection analysis software, which allows for future analysis of surrounding traffic by applying a uniform growth rate of 2% for each year over the 10-year period.
- Post-development network analysis is modelled for when the self-storage facility development is in operation and after 10 years of future growth in surrounding traffic.

These assumptions will result in the development trip distribution shown in Figure 6 for relevant traffic movement and modelled intersections.

Figure 6: Development Traffic Distribution on Surrounding Road Network - AM & PM Peak

The outcome of the SIDRA modelling

A summary of the results of the SIDRA intersection performance analysis has been provided in Tables 3 to 6 below, as well as the SIDRA Movement Summary Tables attached in *Appendix 'D'* of this report.

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	A	6.4	0.299
Base Year 2024 – Post Development	А	6.4	0.304
Future Year 2034 – Pre-Development	А	6.7	0.375
Future Year 2034 – Post Development	А	6.7	0.380

Table 3: Network SIDRA Modelling - Helen St / Virgil Ave - 8.00am - 9.00am

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	6.6	0.366
Base Year 2024 – Post Development	А	6.6	0.366
Future Year 2034 – Pre-Development	A	7.0	0.461
Future Year 2034 – Post Development	A	7.0	0.461

Table 4: Network SIDRA Modelling - Helen St / Virgil Ave - 3.00pm - 4.00pm

Hemanote Consultants

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	2.8	0.366
Base Year 2024 – Post Development	А	2.8	0.374
Future Year 2034 – Pre-Development	А	4.0	0.619
Future Year 2034 – Post Development	А	4.1	0.634

Table 5: Network SIDRA Modelling - Hector St / Munro St - 8.00am - 9.00am

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	4.2	0.640
Base Year 2024 – Post Development	А	4.3	0.651
Future Year 2034 – Pre-Development	A*	31.3	1.204
Future Year 2034 – Post Development	A*	34.2	1.226

Table 6: Network SIDRA Modelling – Hector St / Munro St – 3.00pm – 4.00pm

*The overall average LOS is at 'A', with the exception of the east approach leg of Munro Street, which is at LOS 'F'.

The SIDRA analysis results indicated that the proposed development will have minimal impact on the operational performance of key intersections in the study area, both in the base year and the 10-year future scenario.

Base Year findings:

 The proposed self-storage facility (post-development) will not alter the current LOS (pre-development) at the subject intersection of Helen Street / Virgil Avenue and Hector Street / Munro Street as outlined earlier in Section 3.3 of this report, and will continue to operate at its current level of service during weekday AM and PM peak periods.

Future Year findings:

- In the 10-year scenario without development, the subject intersection of Helen Street / Virgil Avenue is predicted to continue to operate at an overall LOS 'A', during the AM and PM peak periods. The overall performance of Hector Street / Munro Street intersection is anticipated to operate at its current LOS during the AM peak period, however it is anticipated that the east approach leg of Munro Street will deteriorate to LOS 'F' during the PM peak period (regardless of the subject proposed development being in operation or not). It would be recommended to provide future traffic measures by Council to improve the overall performance of this intersection
- Notably, the proposed development is not expected to alter these future LOS outcomes, with intersections maintaining the same levels of service as projected in the pre-development scenario.

Therefore, the estimated traffic generation from the proposed development will have a low impact on current traffic flows on Helen Street and surrounding streets, ensuring that the operational performance of existing key intersections remains at acceptable levels without adverse effects.

7 CONCLUSION

It can be concluded from the traffic and parking impact assessment that the proposed self-storage facility development at **88 Helen Street, Sefton**, will not have adverse impacts on existing traffic or parking conditions and is worthy of Council's support in its present form.

- The existing traffic flows on Helen Street, Virgil Avenue, Munro Street and Hector Street are appropriate for three local roads and one regional road, respectively, in a mixed residential and commercial area, where traffic is well controlled without major queuing or delays at the subject site in peak hours, with spare capacity.
- The estimated traffic generation from the proposed development is of low impact on existing flows on Helen Street and surrounding streets and will not have adverse impacts on the current operational performance of the subject existing intersections, which will continue to operate at the same levels of service. The traffic generated by the proposed self-storage facility can be readily accommodated within the existing road network.
- The parking demand for the proposed self-storage facility can be accommodated within the proposed adequate on-site parking facilities, which is in compliance with the findings of the SSAA Parking and Traffic Study 2022/2023.
- The on-site vehicular access, car parking layout and vehicular circulation is adequate for the proposed development and in accordance with AS2890.1:2004, AS2890.2:2018 and AS2890.6:2009 (and the updated AS2890.6:2022), where all vehicles are to enter and exit the site in a forward direction.
- The subject site has good access to existing public transport services.
- The proposed development will not have adverse impacts on parking in the surrounding area.

Hemanote	
	Consultants

Appendix 'A' – Proposed Development Plans

Hemanote

Hemanote	
	Consultants

Appendix 'B' – Vehicle Swept Paths

Hemanote Consultants

Hemanote Consultants

mm 2300 5.0 38.1

Page 43

Hemanote Consultants

Hemanote	
	Consultants

Appendix 'C' – Traffic Volume Surveys

Page 49

Hemanote	
	Consultants

Appendix 'D' – SIDRA Intersection Analysis

MOVEMENT SUMMARY - 8.00am - 9.00am - Base Year 2024 - Helen Street / Virgil Avenue

			1	Pre-Developmen	Vec	4 n h	Iallic	-										Ś		5	2	,	2				
Vehicle Movement Performance Mov Tum Mov Demand ID Class Indel HV Ind vehich % vehich %	wement Per Mov D Class Tio	Performanc Demand Flows Iotal HV J [17 chift % ve	Amival Amival Cotal HVU	Sath Sath	Aver Delay soc	Level of Sanrice	Aver Back Of Queue Phop [Weh Dist] veh m	k Of Queur Disd] m	Prop.	El de B	Aver No. of Cycless	Aver Speed hm/h	Nov Nov	icle Moveme • Tum Mov Class	vement Mov Jass	icle Movement Performance Tum Mov Demand Class Flows Class [104-114) [16			Sain A Sain A	Aver Le ⁿ Delay Se sec	Level of A Service	Aver Back Of Clueue Prop Veh. Dist] veh. m	Of Queue Dist] m	day	Rate Stop	Aver No. of Cycless	Aver Speed km/h
South: Helen Street	Street												Sou	South: Helen Street	Street												
1 L2 M	All MCs 14	145 0.0	145 0.0	0.237	51	LOSA	9.0	64	60.0	0.51	60.0	48.4		21	AIMOS	145 0.0	145	0.0	0.241	11	LOS A	0.6	4.4	0.10	0.51	0.10	483
upeoud		0.0	346 0.0	0.237	10.1	LOSA	0.6	43	60'0	0.61	0.09	44.2	App		AII MUS	349 0.0	349	00	0.241		LOSA	0.0	4.4	0.10	1970	0.10	44.1
North: Helen Street	Street												Nort	North: Helen Street	Street												
8 TI A	AI MCs 27		272 0.0	0.299	6.3	LOSA	0.7	52	0.48	0.56	0.48	51.9	60		VII MCs	275 0.0	275	00	304		LOSA	0.8	53	0.48	0.56	0.48	51.9
	AII MCs	12 0.0	12 0.0	0.299	92	LOSA	0.1	52	0.48	0.56	0.48	53.2	6	R2 /	All MCs	13 0.0	13	0.0	0.304	9.2 L	LOSA	0.8	6.3	0.48	0.56	0.48	63.2
Approach	2		283 0.0	0.299	6.4	LOSA	0.7	5.2	0.48	0.56	0.48	52.0	App	Approach		287 0.0		0.0	304	6.4 L	LOS A	0.8	5.3	0.48	0.55	0.48	52.6
West Virgil Avenue	enne												Wes	West Virgil Avenue	Anna												
12	AIMCs	13 0.0	13 0.0	0.227	6.6	LOSA	0.5	3.4	0.43	0.65	0.43	45.4	01	121	All MCs	14 0.0	4	0.0	229	6.7 L	LOSA	0.6	3.6	0.43	0.65	0.43	46.4
12 R2 AI	AII MCs 20	201 0.0	201 0.0	0.227	9.1	LOSA	0.5	3.4	0.43	0.65	0.43	44.3	12	R2 /	All MCs	201 0.0	201		0.229	9.1 L	LOS A	0.5	3.5	0.43	0.65	0.43	44.2
Approach	2	214 0.0	214 0.0	0.227	8.9	LOSA	0.5	3.4	0.43	0.65	0.43	44.3	App	Approach		215 0.0	215	0.0	0.229	9.0 L	LOS A	0.5	3.5	0.43	0.65	0.43	44.3
All Vishides	\$	843 0.0	843 0.0	0.299	6.4	LOSA	0.7	52	0.31	0.56	0.31	48.3	All	All Vehicles		852 0.0	852	0.0	0.304	6.4 L	LOSA	0.8	5.3	0.31	0.56	0.31	48.3

Hemanote Consultants

31 March 2025

MOVEMENT SUMMARY – 8.00am – 9.00am – Base Year 2024 – Hector Street / Munro Street

ehiole Movement Performance	(Performar	nce									1	Vehicle	cie Movem		nt Performance										
w Tum Mov Clans	Demand Flows (Total HV) votin %	Arrival Flows [Total HV] web/h	8	And A	Avec Lanel of Datay Service soc	Aver Bad	k Of Queue Phys. Dec]	ġð,	-0 582		Aver. posod kradi	но Ю	Tum Mov Class		Demand Flows Muh % ve	Arrival Flows Total HV		Aver Delay	Level of Service	Aver Back Of Queue Prop [Viet: Dief] veh m	k Of Dam	ţð.	x 않	No. of	Speed Speed
South: Hector Street												South: 1	South: Hector Street	root											
T1 AII MCs	432	432		0.3		0.1	0.8	10.0	60.0	0.07	6.63	2	T1 AILMOR		6.0			0.3	LOSA	0.1	0.8	80.0	0.10	80.0	58.7
R2 AII MCa	8	8		8.7	3	0.1	08	0.07	600	0.07	56.4	n	R2 AII MOS	ACs 21	4.8	21 4.8	0.252	8.7	LOBA	0.1	80	800	0.10	0.08	66.2
Approach	452 5.0	452 5.0	0.251	0.6	M	0.1	0.8	0.07	60.0	0.07	6.92	Approach	÷	46	9.0	463 5.0		0.7	M	0.1	0.8	800	0.10	80.0	1.95
East Munno Street												East M	East Munro Street	ъ											
L2 AII MCs	20 5.0	20 5.0		12.2	LOSA	0.6	4.1	0.75	1.07	0.58	45.2	4	L2 AI MCs	ACs 21		21 4.8		12.3	LOGA	0.6	43	0.76	1.07	0.99	45.2
R2 AII MCs	112 50	112 5.0		19.8		90	41	0.75	1.07	0.98	42.1	9	R2 AI MCs		4.9	114 4.9	0,374	20.0	LOSB	9.0	4.3	0.76	1,07	66'0	42.1
Approach	132 50	132		181	LOS B	06	41	0.75	1.07	0.98	42.6	Approach	fi	135	4.9			18.8	LOSB		4.3	0.76	1.07	0.99	42.6
North: Hector Street												North: P	North: Hector Street	oot											
L2 AII MCa	139 50	139 5.0	0.305	31	LOSA	0.0	0.0	000	0.14	000	46.1	-	L2 AI MCs	ACs 141	4.9	141 4.9	0.306	3.1	LOSA		0.0	000	0.14	00.0	46.0
T1 AII MOS	429 50	429 5.0	0.306	0.0	LOSA	0.0	0.0	000	0.14	000	582	8 T1			5.0			0.0	LOSA	00	00	000	0.14	000	582
Approach	568 50			0.8	NA	0.0	0.0	0.00	0.14	000	55.4	Approat	÷	115	20	571 5.0	0,306	0.3	M	0.0	0.0	000	0.14	0.00	55.4
All Vehicles	1152 5.0	50 1152 50	0.366	2.8	MA	9.6	4.1	0.11	0.22	0.14	49.7	All Vohicles	clos	1158	5.0	1158 5.0	0.374	2.8	NA	9.0	4.3	0.12	0.23	0.16	49.6

Hemanote

Consultants

Hemanote Consultants

		ш.	re-L	Jev	elop	Pre-Development	H								2	Pos	t-De	evel	Post-Development	lent	1000			
Vehicle Movement Parformance	t Performa	50										Vehicle	eoncarant Darferman	of Berforn	0000									
Mov Tum Mov ID Class	Demand Antiva Flows Flows (Total HV) (Total HV veh/h % veh/h %	Amval Flows (Total HV J	Seless S	Aver Detay	Aver Level of Delay Service seic	Aver Back Of Queue Prop [Vet: Det] veh m	Of Quese Det m	dan Dan	E Sala	Aver No. of Cycles	Aver Speed Iamh	¥e ₩e	Tum Mov Class	Demand Flows [Total HV]		Arrival Flows al HVT 5	Sath Det vic s	Aver. Lavel of Delay Sarvice sec		Aver. Back Of Queue Prop. [Veh Dist] veh m	(Gueue P		Eff. Avver. Stop No. of Rate Cycles	er. Aver. of Speed km/h
South: Helen Street												South: 1	South: Helen Street											
1 L2 AIMCs 2 T1 AIMCs	181 5.0 251 5.0	181 5.0 251 5.0	762.0	5.1	LOSA	0.8	62	0.10	0.51	0.10	48.0	1 0	LZ AI MOS T1 AI MOS	5 181 8 251	5.0 181 5.0 251	5.0 0.2	0.297 5	5.1 LO	LOSA D	0.8	62 0 62 0	0.10 0.0	0.51 0.01	0.10 48.0 0.10 33.8
Approach	432 5.0	432 5.0	762.0	49	LOSA	0.8	6.2	0.10	0.51	0.10	44.0	Approach	-5		432		0.297 4	49 LOS	LOSA D	0.8	62 0	0.10 0	0.51 0	0.10 44.0
North: Helen Street												North: H	telen Street											
8 T1 AIIMCs		321	0.366	6.7	LOSA	1.0	1.0	0.54	0.58	0.54	51.7	80	8 T1 AIIMCs	321	321		0.366 6					0.54 0.		0.54 51.7
9 R2 AIMCs	11 5.0	11 5.0	0.366	9.6	LOSA	1.0	1.0	0.54	0.58	0.54	623	6	RZ AII MCs	11		5.0 0.2	0.366 9	9.6 LOS	LOSA 1		7.0 0		0.58 0.	0.54 52
Approach	332 5.0	332 5.0	0.366	6.8	LOSA	1.0	1.0	054	0.58	0.54	51.7	Approa	Ð	332	332			6.8 LOS	LOSA 1	1.0				0.54 51.7
West: Virgil Avenue												West: V	West: Virgil Avenue											
10 L2 AII MCs	14 5.0	14 5.0	0.262	7.3	LOSA	9.6	42	0.49	0.67	0.49	44.7		L2 AI MCs	4	41	5.0 0.3	0.262 7		LOSA 0					
12 R2 AI MCs	213 5.0	Z13 5.0	0.262	9.7	LOSA	9.0	42	0.49	0.67	0.49	43.5	12	R2 AI MCs	213	5.0 213			9.7 LOS		0.6	4.2 0	0.49 0.	0.67 0.	0.49 43.5
Approach	226 6.0	226 6.0	0.262	9.6	LOGA	9.0	42	0.49	0.67	0.49	43.6	Approach	5	226 5	5.0 226	5.0 0.2	0.262 9	9.6 LOS	LOSA 0		4.2 0		0.67 0.	0.49 43.6
All Vehicles	989 5.0	689 6.0	0.366	6.6	LOSA	1.0	7.0	0.33	0.57	0.33	47.9	All Vehicles	des	3 696	606 019	5.0 0.2	0.366 6	6.6 LO	LOSA 1	10	7.0 0	0.33 0.	0.57 0.	0.33 47.9

MOVEMENT SUMMARY – 3.00pm – 4.00pm – Base Year 2024 – Helen Street / Virgil Avenue

31 March 2025

Hemanote Consultants

MOVEMENT SUMMARY - 3.00pm - 4.00pm - Base Year 2024 - Hector Street / Munro Street

Petromance Deg Aver Level of Level of Toos Aver Level of Level of Toos Aver Level of Level of toos Aver Level of Level of toos Aver Level of toos Aver																	
Nice Nowment Prinomance Amail Deg Ave: Level of bills Nom Nov Demand Amail Deg Ave: Level of bills Sain Degs Ave: Level of bills Ave: Level of bills Sain Degs Ave: Level of bills Ave: Los Ave: Los Ave: Los Ave: Los Ave: Ave: Los Ave: Los Ave: Los Los Ave: Los Ave: Los Ave: Los Ave: Los Ave: Los Ave: Los Los Ave:																	
Turn Mov Demand Annal Dag Aver. Level of the stress Instant Mov Task Minis Sain Dags Sain Dags Service Instant Mov Task Minis Sain Dags Service Sain Dags Service Instant Mov 496 50 0.200 0.2 LOSA Rit Hactor Street 13 50 13 50 0.200 0.4 MA Robin 311 5.0 511 5.0 0.200 0.4 MA Robin 313 5.0 13 50 0.200 0.4 MA Robin Strip 5.0 515 5.0 0.200 0.4 MA Robin Strip 5.0 5.0 0.200 0.4 MA Robin Strip 5.0 5.0 0.500 0.4 MA Robin Strip 0.75 0.640 2.35 LOSCB Robin 177<						Vehicle Movement Performance	Performan	8									
Active Sinet Active Sinet Active Sinet Active Sinet Active Sinet T1 A1MCs 499 50 0.200 0.2 Pic A1MCs 499 50 13 50 0.2 0 Pic A1MCs 13 50 13 50 0.200 0.2 0 Proved 511 50 511 50 0.200 0.4 7 proved 515 50 511 50 0.200 0.4 7 Prove 17 50 751 0.640 7 8 5 Prove 177 50 177 50 0.640 27 8 Prove 75 <td< th=""><th>Aver. Back 0 I Vish</th><th>f Queue Prop. Dist 1</th><th>티욹相</th><th>Aver. No. of Curdes</th><th>m</th><th>Mov Tum Mov ID Class</th><th>Elemand Amval Flows Flows [Total HV] [Total HV]</th><th>Amval Flows [odal HV]</th><th></th><th>Aver. Delay</th><th>Level of A</th><th>Aver. Back Of Queue Prop Que [Vish. Dist]</th><th>X Queue Ded]</th><th></th><th></th><th>Aver. No. of S Cycles</th><th>Aver. Speed</th></td<>	Aver. Back 0 I Vish	f Queue Prop. Dist 1	티욹相	Aver. No. of Curdes	m	Mov Tum Mov ID Class	Elemand Amval Flows Flows [Total HV] [Total HV]	Amval Flows [odal HV]		Aver. Delay	Level of A	Aver. Back Of Queue Prop Que [Vish. Dist]	X Queue Ded]			Aver. No. of S Cycles	Aver. Speed
Tit AtMCs 498 5.0 498 5.0 0.290 0.2 P2 P2 MMCs 31 5.0 0.260 9.7 proadh S11 5.0 5.1 5.0 0.200 0.4 proadh S11 5.0 5.1 5.0 0.200 0.4 st Munno Street S11 5.0 0.200 0.4 0.4 L2 MMCs 26 5.1 5.0 0.640 178 L2 MMCs 177 5.0 151 5.0 0.640 278 proadh 177 5.0 177 5.0 0.640 278 muchtector Street 177 5.0 177 5.0 0.640 278	vel	E			knvh	South: Hactor Street	vehilt %	atuh %	¥	ž		Hav	E	L			kmłh
R2 AI M03 13 50 13 50 0.200 97 proadh 511 50 511 50 0.200 0.4 st Munno Street 11 5.0 5.15 0.265 0.260 0.4 L2 AI M03 26 5.0 25 5.0 0.540 178 PL2 AI M03 26 5.0 26 50 0640 178 proach 177 5.0 177 5.0 0.640 278 much hector Street 177 5.0 177 5.0 0.640 278	0.1		0.06	0.05	57.8	2 T1 AII MCs	498 5.0	498 5.0	0.281	0.2	LOSA	0.1	9.0	0.05	0.06	0.05	57.7
prood 511<5.0 511<5.0 0.280 0.4 st Munn Street	0.1	0.6 0.05		0.05		3 R2 AIIMCs		14 4.6	0.281		LOS A	0.1	0.6	0.05	0.06	0.05	57.3
at Murron Street 12 Al MOS 26 50 0640 178 P2 Al MOS 26 50 0640 178 P2 Al MOS 151 50 151 50 0640 278 proach 177 50 177 50 0640 278 fint hector Street	V 0.1	0.6 0.05	0.06	0.05	57.8	Approach	512 5.0	512 5.0	0.281	0.5	NA	0.1	0.6	0.05	0.05	0.05	57.6
12 All MCs 26 50 25 50 0640 178 P2 All MCs 151 50 0640 295 proach 177 50 177 50 0640 278 frit Hector Street						East. Munno Street											
P2 All MCs 151 5.0 151 5.0 0.640 29.5 proach 177 5.0 177 5.0 0.640 27.8 frit Hector Street	3 12	8.6 0.88	1.18	1.55	40.8	4 L2 AII MCs	27 4.8	27 48	0.651		LOS B	12	8.9	0.89	1.19	159	40.6
mode 177 5.0 177 5.0 0.640 27.8 Aft Hector Street	: 12	8.6 0.88	1.18	1.55	37.8	6 R2 AIIMCs	153 4.9	153 4.9	0.651	29.9	LOSC	12	6.9	68.0	1.19	1.59	37.6
00 000 UD 000 00 000			1.18	1.66		Approach	180 4.9	180 4.9	0.651	28.1	LOS B	12	8.9	0.89	1.19	159	38.1
10 10 10 10 10 10 10 10 10 10 10 10 10 1						North: Hector Street											
1 LL MINULS 120 2.0 120 2.0 U.204 3.1 LUGA	A 0.0		0.13	0.00	46.5		158		0.356	3.1	LOSA	0.0	0.0		0.13	000	46.4
8 T1 AII MCs 505 5.0 505 5.0 0.354 0.0 LOSA		0.0 0.00	0.13	0.00	56.3	8 TI AIIMCs	505 5.0	505 5.0	0.356	00	LOSA	0.0	0.0	0.00	0.13	0.00	56.3
Approach 661 5.0 661 5.0 0.354 0.7 NA	0.0 1	0.0 0.00	0.13	00.00	55.6	Approach	663 5.0	663 5.0	0.356	0.7	NA	0.0	0.0	0.00	0.13	000	592
All Vehicles 1348 5.0 1348 5.0 0.640 4.2 NA	1 12	8.6 0.13	0.24	0.22	46.7	All Vehicles	1365 5.0	1366 5.0	0.651	4.3	NA	12	6.9	0.14	0.25	0.23	46.4

e	
Ē	
-	
e	
>	
4	
-	
-	
2	1
>	
1	
-	
÷	
e	
e	
1	
1	
0	
-	
5	
e	
-	
e	
T	
4	
3	
0	
2	
-	
G	
(D)	
~	
-	
(1)	
2	
-	
Ŧ	
3	
11	
-	
1	
5	
5	
G	
0	
õ	
6	
1	
-	
F	
-	
č	
2	
0	
00	
ű	
Ĩ	
۲- ۳	
2Y - 8	
RY - 8	
ARY - 8	
IARY - 8	
MARY - 8	
MARY - 8	
MMARY - 8	
UMMARY - 8	
SUMMARY - 8	
SUMMARY - 8	
SUMMARY - 8	
IT SUMMARY - 8	
NT SUMMARY - 8	
ENT SUMMARY - 8	
IENT SUMMARY - 8	
MENT SUMMARY - 8	
EMENT SUMMARY - 8	
TEMENT SUMMARY - 8	
VEMENT SUMMARY - 8	
DVEMENT SUMMARY – 8	
OVEMENT SUMMARY - 8	
NOVEMENT SUMMARY - 8	
MOVEMENT SUMMARY - 8	

																			5						
hide Movement Performance	ant Perform.	ance										Vehicle	Movem	ы	ormance										
w Tum Mov Class	Demand Arrival Flows Flows [Total HV] [Total HV] vutvih % witvih %	E Flow	845 80% ■ # 57 #	Avec. 1 Delay	Samual Samua	Aver. Back Of Queue Frop. Que veh. Dist]	k Of Queue m	10	ı,	And S and S	Avec Speed	r Àg	Tum Mev Class		Demand Flows (Total HV) [Tot veh/h %, veh	Arrival Flows Total HV]	San ≥	Aver Detay se User	Service	Aver. Back Of Queue Prop. [Veh Dist] veh m	Of Queue 1 Det]		~~ <i>G</i>	Aver No. of Cycless	Speed.
South: Helen Street	*											South: h	South: Holen Street	T											
	174	174				0.8	2.2	0.11	050	0.11	48.3		L2 AII MCs				0.290		ASO.	8.0	6.9				48.3
Approach Approach	416 0.0	416 0.0	0 0.286	4 4 9	T LOSA	0.8	57	0.11	80	0.11	41	Approach			419 0.0 41	419 0.0	0.290	4.9	LOSA	0.8	0.00	0.12	0.50	0.12	44.0
North: Helen Street												North H	North: Helen Street	*											
8 T1 AIIMCs		326 0.0	0 0.375			1.0	6.9	950	0.59	950	51.7	8 T1	T1 AII MCs	Cs 330	0.0	0.0 00	0.380		OSA.	1.0	7.1			990	51.7
R2 AII MOS	28 14 0.0	14 0.0	0 0.375	96 9	5 LOSA	1.0	6.9	990	0.69	990	63.0	4 6			0.0	15 0.0	0.380	9.7	LOSA	1.0	7.1	0.56	0.59	0.56	53.0
proach	340 0.0	340				1.0	6.9	0.56	0.59	0.56	51.7	Approac	£	345	0.0	15 0.0	0.380		ASO.	1.0	7.1			0.56	51.7
West Virgil Avenue												West Vi	West Virgi Avenue												
10 L2 AII MCa	Ca 15 0.0	15 0.0	0 0.283		1 LOSA	0.6	4.5	0.49	99 0	0.49	44.9	10	2 AII MCa		00	0.0 9	0.286		OSA.	0.6	45			0.49	44.9
12 R2 AI MOS	38 241 0.0	241		3 96		9.0	4.6	0.49	98 0	0.49	43.9	12 6	R2 AII MCs	Cs 241	00	241 0.0	0.286	9.6	OSA.	9.0	45	0.49	990	0.49	43.8
proach	256 0.0					0.6	45	0.49	980	0.49	43.9	Approach	÷	268	0.0	88 0.0	0.286		LOSA	9.6	4.6			0.49	43.9
All Vehicles	1012 0.0	1012 0.0 1012 0.0	0 0.375	5 67	r LOSA	1.0	6.9	92.0	15.0	0.36	48.0	All Vehiclen	len	1022	0.0 1022	0.0	0.380	6.7 1	LOSA	1.0	7.1	0.36	0.57	0.36	48.0

Hemanote

Consultants

MOVEMENT SUMMARY - 8.00am - 9.00am - Future Year 2034 - Hector Street / Munro Street

				-e-	Nen	/eioł	Pre-Developmen	۲								ř	st-I	Jev	elop	Post-Development	F				
Vehicle W	lehide Movement Performande	Performa	ģ																						
Mov Ide		Demand Flows Total HV	Demand Anival Flows Flows [Total HV] [Total HV] weith % weith %		A COLUMN TWO IS NOT	Level of Service	Aver Back Of Queue Prop. [Veh Dist] veh m	A Of Queu Dist] m	e Prop. Oue	El So 원	Aver. No. of Cycles	Aver. Speed km/h	venicie moverne Nov Tum Mov ID Class	rent renorm r Demano ss Flows vehith V	enormance Demand Flows [otal HV] [To shift - X volt	Ameri Flows M %	antin ∦	Avec Li Detay S	Level of Service	Aver: Back Of Queue Prop. Que Vich. Dist] veh. m	Del]	Gue Oue	断房置	Aver. No. of Cycles	Aver. Speed km/h
South: Hector Street	tor Street												South: Hector Street	reet											
2 11	AIMOS	518 5.0	518 5.0	0.306	0.4	LOSA LOSA	02	11	0.08	0.11	0.08	66.0 65.4	2 T1 AIMOS			518 5.0	0.308	10.4	LOSA	02	2 :	60.0	0.11	60.0	559
bid		542 5.0	F				0.2	11	0.08	0.11	0.08	56.0	proach		543 5.0 5	543 5.0	0.308		NA	0.2	12	0.09	0.11	0.09	55.8
East Mumo Sheet	o Street												East Munro Street	T											
4 12	AIMCs	24 50			17.8			7.9	0.89	1.16	150	40.3	4 L2 AIIN	All MCs 25	8 *	25 4.8	0.634		LOSB	11	82	0.89	1.17	1.54	40
6 R2	AIIMOS					3 LOSC	1.1	7.9	0.69	1.16	1.50	37.3	R2		4.9	136 4.9	0.634	31.3	LOSC	1.1	8.2	0.89	1.17	1.54	37.1
Approach		158 5.0	158	0.619	28.8			61	69:0	1.16	1.50	37.8	Approach	162	4.9	162 4.9	0.634		LOSC	1.1	8.2	0.89	1.17	1.54	37.6
North: Hector Street	lor Street												North: Hector Street	oet											
1	AIMCA	167 5.0	167	0.366			0.0	0.0	000	0.14	0.00	46.1	3	All MCs 169	64	169 4.9	0.367		LOS A	0.0	0.0	0.00	0.14	00.0	46.0
8 T1	AIMOS	515 5.0	615			D LOSA	0.0	0.0	000	0.14	0.00	66.2	8 TI AIIA	All MCs 615	0'5	515 5.0	0.367	0.0	LOSA	0.0	0:0	0.00	0.14	0.00	5.3
Approach		682 5.0	682 5.0	0.366	0.8	NA NA	0.0	0.0	0000	0.14	0.00	66.4	Approach	685	20	685 5.0	0.367	0.8	M	0.0	0.0	0.00	0.14	0.00	56.3
All Vohides		1382 5.0	1382 5.0	0.619	4.0	AN D	1.1	51	0.13	0.24	0.20	46.7	All Vehicles	1369	0 1389 5.0	0'5 60	0.634	4.1	W	1.1	8.2	0.14	0.25	0.21	46.4

Hemanote

Consultants

31 March 2025

MOVEMENT SUMMARY – 3.00pm – 4.00pm – Future Year 2034 – Helen Street / Virgil Avenue

		L	5	2	in a	rre-Development	-									2	SI-L	eve	do	Post-Development	Ŀ				
		2																							
Mov Turn Mov	Demand Demand Flows Flows	Atrival Atrival Flows	Same	Aver. L Dolay	Level of Service	- P	k Of Queue Diet 1	Oueue Prop. Oue Diet 1	Slop E	Aver No. of S Carles	Aver. Spood	Venicie I Mov Tu ID	ICLE MOVEMENT PERTORMANCE Tum Nov Demand Class Flows	M Perform Demand Fibros	and the second second	Arrival Flows	Sam	Aver Le Detay Si	Level of A Service	Aver Back Of Queue Prop.	Of Queue	de la	۳. S	Aver.	Aver
South: Helen Street	the state	which y	NC.	ž		1	Ē		64		kmh	South: Helen Street	en Street	vehit)	% veh	54	¥	X		ĒĒ	X		20	ryues	kash
1 12 AI MOS	217 5.0	217 5.0	0.358	52	LOSA	7	8.3	0.12	0.50	0.12	47.9	1	2 AII MCs	217	5.0 217	20	0.358		LOSA	11	8.3	0.12	0.50	0.12	47.9
2 T1 ALMOS	301 5.0	301 5.0	0,368	4.8	LOSA	1.1	8.3	0.12	0.50	0.12	33.5	11 2		106		20	0 358	4.8 1	OS A	1.1	83	0.12	050	0.12	33.5
Approach	518 5.0	518 5.0	0.358	4.9	LOSA	1.1	83	0.12	0.50	0.12	43.8	broa		518		50	0.358	49 1	LOSA	1.1	83	0.12	050	0.12	43.8
North: Helen Street												North: Helen Street	en Street												
8 TI ALMCs	385 5.0	385 5.0	0.461	73	LOSA	13	9.6	0.63	0.61	0.63	513	B T1	I AR MCs	淵	5.0 385	20	0.451	7.3 L	LOSA	1.3	9.6	0.63	0.61	0.63	513
9 R2 AI MCs	13 5.0	13 50	0.461	10.2	LOSA	13	9.6	0.63	0.61	0.63	52.7	9 R2	2 AI MOs	13	5.0 13	20	0.461		LOS A	13	9.6	0.63	0.61	0.63	52.7
Approach	398 5.0	398 5.0	0.461	74	LOSA	13	9.6	063	0.61	0.63	514	Approach		300	5.0 398	20	0,461	TA L	LOSA	1.3	9.6	0.63	0.61	0.63	51.4
West Virgil Avenue												West Virgit	Avenue												
10 L2 ALMOS	16 5.0	16 5.0	0.330	7.9	LOSA	0.8	5.6	950	0.69	0.56	44.0	10 12	2 AI MCs	16	5.0 16	5.0	0.330		LOSA V	0.8	5.6	0.56	0.69	0.56	44.(
12 R2 AI MOS		255 5.0	0.330	10.3	LOSA	0.8	5.6	0.56	0.69	0.56	43.0	12 R2	2 AII MCs	52	5.0 255	5.0	0.330	10.3 L	LOSA	0.8	5.6	0.56	0.69	0.56	43.0
Approach	272 5.0	272 5.0	0.330	102	LOSA	0.8	5.6	9990	0.69	0.56	43.0	Approach		212	5.0 ZI	5.0	0.530	10.2 L	LOSA	0.8	5.6	950	0.69	0.56	43.0
All Vehicles	1187 5.0	1187 5.0	0.461	7.0	LOSA	13	9.6	039	0.58	0.39	47.5	All Vehicles		1811	50 1187	50	1970	7.0 L	LOSA	51	9.6	0.39	0.58	0.39	47.5

Hemanote Consultants

MOVEMENT SUMMARY - 3.00pm - 4.00pm - Future Year 2034 - Hector Street / Munro Street

			Pre	Pe	Pre-Development	bme	ant									Po	st-D	eve	dol	Post-Development				
Vehicle Novement Performance May Tum Moy Denand D Class (Total Pue (Set 10 10 10 10 10 10 10 10 10 10 10 10 10	nt Performa Domand Flows [Total HV] vehith %	ance 1 Amval Flows 1 [Total HV] 5 veh/h %		- Des Selas	Aver. Level of Delay Service sec		Aver Back Of Queue Prop [Vah Det] veb m	un Prop. Oue	E See H	Aver No. of Cyders	Aver Speed kmth	Vehicle Mov 1 D	Vehicle Movement Performance Mov Tum Mov. Dentand D. Class Flows I Total IV/ I To vehin" S, veh	nt Performan Demand Plows Total HV] [velth %]	mance and N Tota	nce Amival Flows rotal HVI	See 1	Ave: Le Delay Se	Level of A Service	Aver Back Of Queue Prop. [Veh. Dist] veh. m.	M Queue 1 Det] m		一日の調査	Aver Aver No of Speed Cycles km/h
South: Hector Street	H											South: 1	South: Hector Sheet	1.000										
2 T1 AIMCs 3 R2 AIMCs	36 597 50 36 15 50	0 597 5.0		0.341	0.3 LOSA 11.4 LOSA	A 0.1 A 0.1	60	0.06	10.0	0.06	57.0	21 60	T1 AI MCs R2 AI MCs	597	5.0 597 4.6 16	46	ENC.0	04 L 114 L	LOSA	0.1	60	0.06	0.08	0.06
E.	1.77									0.06		bido		614	5.0 614	5.0	CMC.0		NA	0.1	6.0		0.06	0.05
East Mumo Sheet												East: M	East: Munro Street											
4 L2 AI MO	s 32 5.0	32	5.0 1.	1204 21	216.3 LOS F ¹¹					60.6		4	L2 AI MCs	8	4.8 33	3 48	1226 2	234.6	LOSF	11.9	87.0	1.00	3.19	9.61
6 R2 AIMCs	s 181 5.0	181	5.0 1.			F" 11.0	0 80.4	1.00	3.06	90.6	11.1	9	R2 AI MCs	183	4.9 183	6.4 6	1226 2	255.9 L	OSF	11.9	0.78	1.00	3.19	9.61
Approach	212 5.0	212	50 1.	1.204 23	234.3 LOSE			1.00	3.06	60.6		Approach	÷	216	4.9 216	49	1226 2	2527	LOSF	611	0.78	100	3.19	19.61
North: Hector Street	Ŧ											North: h	North: Hector Street											
	s 187 5.0	187	5.0 0.	0.425	3.1 LOSA	A 0.0		000		0.00	46.4		L2 AI MCs	189		4.9	0.427		LOSA	0.0	0.0		0.13	0.00
8 T1 AIMCs	s 606 5.0	606	5.0 0.	0.425	0.0 LOSA	A 0.0	0.0	0.00	0.13	0.00	56.2	80	T1 AI MC8	909		20	0.427		LOSA	0.0	0.0		0.13	0.00
Approach.	793 5.0	263	5.0 0.	0.425	0.7 N	NA 0.0		000	0.13	0.00		Approach	5	362	5.0 796	5.0	0.427	0.1	NA	0.0	0.0	0.00	0.13	0.00
All Vehicles	1618 5.0 1618 5.0	1618		1.204 3	31.3 N	NA 11.0	0 80.4	0.15	0.49	121	20.3	All Vehicles	cles	16206	5.0 1626	6 5.0	1.226	34.2	MA	11.9	0.78	0.16	0.52	1.30

Hemanote

Consultants